2017年2月22日,周三晚上8点30分,乐逗游戏的谢佳标老师为大家带来了主题为“如何利用R语言对游戏用户进行深度挖掘”的交流。谢佳标老师有着九年以上的数据挖掘实战经验,同时是一位R语言的资深玩家,多次在中国R语言大会上做主题演讲,他现在乐逗游戏负责大数据挖掘及可视化工作。以下是主持人Jacty整理的交流实录,记录了谢老师与读者智慧沟通的精粹。
问:文中在路径分析和付费用户分析中均提到了社会网络,能否讲讲关于社会网络的知识?
答: 相信看过文章的读者都发现,我在文章的路径分析和付费用户分析中均提到社会网络这个图。
大家发现在算法的右下角有一个社会网络分析的方法,这个是这几年非常流行的一种可视化方式,图中这个网络图是我们使用networkD3绘制的,可以实现动态交互地效果。
我们先简单了解下社会网络图的概念。社会网络分析(Social Netwrok Analysis,SNA)是在传统的图与网络的理论之上对社会网络数据进行分析的方法。随着人类进入了移动互联网时代,社会网络数据成了重要的数据资源。SNA的本质是利用各样本间的关系来分析整体样本的群落现象,并分析样本点在群落形成中的作用以及群落间的关系。
网络图分为无向图(只研究用户间是否发生过沟通)和有向图(图中使用箭头来标识行为的发起方和接收方):
左图和中间的图就是无向图,右边的是有向图,大家留意右边这个图的数据传递是有箭头,箭头表示发起方到接收方。我们刚才提到如果绘制交互可视化的社会网络图可以利用networkD3包绘制。但是今天给大家介绍另一个扩展包igraph。
在R中,igraph包是专门用来处理网络图的。使用之前先通过install.packages("igraph")下载安装。igraph包非常容易创建各种常规图,其中包括无边图(make_empty_graph函数)、星形图(make_star函数)、环形图(make_ring函数)、完全图(make_full_graph函数)、树状图(make_tree函数)等图形。不同形状的社会网络图可以用来发现各节点间的关系。

